Woodlands Calculation Progression


## Written Calculation Progression

This document maps written formal calculation methods for addition, subtraction, multiplication and division. Written Calculation Progression links the key concrete experiences with pictorial and abstract representations. This supports pupils to move with confidence and deep conceptual understanding through each strand of calculation.

## The Importance of Mental Mathematics

While this policy focuses on written calculation in mathematics, we recognise the importance of mental strategies and known facts that form the basis of all calculations. A range of mental strategies are developed in a separate mental maths progression map. Both mental and written calculations will intertwine with one another, as key number facts become embedded, leading to greater ease of using a written method.

## Concrete, Pictorial and Abstract

## Concrete manipulatives

Concrete manipulatives are objects that can be touched and moved by pupils to introduce, explore or reinforce a mathematical concept. They provide a vehicle to help pupils make sense of complex, symbolic and abstract ideas through exploration and manipulation. Furthermore, they support the development of internal models and help build stronger memory pathways.
the same end results.
Practising concrete and pictorial methods will lead on to the final written methods (the abstract) and should be used prior to embedding the written method. This will give children a firmer understanding of these procedures and the ability to reason their working out.

## Pictorial (including jottings)

The act of translating the concrete experience into a pictorial representation helps focus attention on what has happened and why. This supports deeper understanding and a stronger imprint on memory. Pictorial representations are more malleable than concrete resources and, once understanding is secured, allow exploration of complex problems that may be challenging to reproduce with manipulatives.

## Abstract - Written

The aim, within this policy, is for compacted forms of notation. These have developed through the history of mathematics. Explicit individual steps in procedure are hidden or they have been shortcut. The informal and expanded methods expose all the intermediate steps, replicating thought processes more closely and support understanding prior to compaction.

## Abstract - Spoken

Learning to use the correct mathematical vocabulary is vital for the development of mathematical proficiency. The ability to articulate accurately allows pupils to communicate and build meaning. Ideas become more permanent.

As the document progresses, the examples given in the concrete and pictorial sections use different manipulatives e.g. dienes, counters, ten frames, Numicon. This is to demonstrate that the different written methods used, can be practised with a range of different resources leading to the same end results.

## Woodlands Calculation Policy Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 012345678910 |
|  |  |  |  | $\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ |

## Woodlands Calculation Policy Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $2^{3}+3^{6}=5$ |  | $3+2=5$ |

## Woodlands Calculation Policy Addition

|  | Objectives/ stages in developme nt | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & 4+6=10 \\ & 6+4=10 \\ & 10=6+4 \\ & 10=4+6 \end{aligned}$ |
|  |  | $8+7=10+5=15$ | ©®®®® ©®®®® $15+5=20$ | $\begin{aligned} & 14+6=20 \\ & 6+14=20 \\ & 20=6+14 \\ & 20=14+6 \end{aligned}$ |

## Woodlands Calculation Policy Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \overline{\overline{\bar{x}}} \\ & \stackrel{\rightharpoonup}{\text { N}} \end{aligned}$ |  |  |  | $\begin{aligned} & 6+3=9 \\ & 3+6=9 \end{aligned}$ |

## Woodlands Calculation Policy Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{1}{\pi} \\ & \end{aligned}$ |  |  <br> Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. | Use a number line to count on in ones. | $5+3=8$ |
| $\begin{aligned} & N \\ & \frac{N}{\mathbb{N}} \\ & \underset{\sim}{*} \end{aligned}$ |  | Counting on in ones Counting on in tens Counting on in both tens and ones |  | $15+13=28$ |

## Woodlands Calculation Policy Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & N \\ & \stackrel{N}{0} \\ & \stackrel{N}{\infty} \end{aligned}$ | ㄷ응ㅡ․00 |  |  | $15+10=25$ $15+13=28$ |
|  |  |  | 28  <br> 13 15 |  |

## Woodlands Calculation Policy Addition



## Woodlands Calculation Policy Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & N \\ & \stackrel{N}{む} \\ & \underset{\sim}{0} \end{aligned}$ |  | Make both numbers on a place value grid. <br> Add up the units and exchange 10 ones for 1 ten. |   | $\begin{aligned} & 40+9 \\ & \frac{20+3}{60+12}=72 \end{aligned}$ |
| $\begin{aligned} & \text { m } \\ & \stackrel{y}{\varpi} \\ & \end{aligned}$ | $\begin{aligned} & \text { 등 } \\ & \text { on } \\ & \text { ㅡㅡ } \\ & \text { O} \end{aligned}$ |  | 84  <br> 48 36 | $48+36=84$ |

## Woodlands Calculation Policy - Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { m } \\ & \underset{\sim}{\infty} \\ & \end{aligned}$ |  |  | NB: Colour code counters if children use place value counters. | $\begin{aligned} & 400+30+5 \\ & 100+20+3 \\ & 500+50+8=558 \end{aligned}$ <br> As children progress, they will move from the expanded to the compacted method. $\begin{array}{r} 435 \\ +\underline{123} \\ \hline 558 \end{array}$ <br> Then introduce decimals (money) |
|  |  | Concrete | Pictorial | $\begin{aligned} & 100+40+6 \\ & 500+20+7 \\ & 600+70+3=673 \end{aligned}$ <br> As the children progress, they will move from the expanded to the compacted method. $\begin{array}{r} 146 \\ +\quad 527 \\ \hline 673 \end{array}$ |

## Woodlands Calculation Policy Addition

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\stackrel{ \pm}{\bar{\omega}}$ |  | Follow Year 3 examples up to 4 digits |  |  |
| $\stackrel{0}{n}$ $\stackrel{1}{0}$ $\stackrel{\text { ¢ }}{\sim}$ |  | Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimals. |  |  |

## Woodlands Calculation Policy Subtraction

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\underbrace{10,9,8,7 \ldots 0}$ |  |
| $\begin{aligned} & \stackrel{0}{\ddot{0}} \\ & \stackrel{0}{U} \\ & \ddot{0} \end{aligned}$ |  | $(4-1=3)$ |  | $3-1=2$ |

## Woodlands Calculation Policy Subtraction

|  | Objectives/ stages in developme nt | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Berperever $\qquad$ <br> apoperpee <br> © 19 $13-4=9$ |  | Put 13 in your head, count back 4. What number are you at? <br> Use your fingers to help. <br> (Apply use of the number line) |
| $\begin{aligned} & \text { ᄃ } \\ & \stackrel{y}{\infty} \\ & \stackrel{y}{0} \end{aligned}$ |  | Children are shown to count on from the smaller number to the laroer numher $\qquad$ | Children are shown to count on from the smaller number to the larger number. <br> Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. | Hannah has 8 goldfish. <br> Helen has 3 goldfish. <br> Find the difference between the number of goldfish the girls have. <br> (Apply use of the number line) |

## Woodlands Calculation Policy Subtraction



## Woodlands Calculation Policy Subtraction

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & N \\ & \stackrel{N}{末} \\ & \end{aligned}$ |  |  | 9 jumps back คคคคคคคคค | $37-28=9$ |
|  |  |  |  | 45-20 |

## Woodlands Calculation Policy Subtraction

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & N \\ & \stackrel{N}{\varpi} \\ & \end{aligned}$ |  |  | $47-19=$ | 47-19 |
|  |  |  |  | 82-49 |

## Woodlands Calculation Policy Subtraction



## Woodlands Calculation Policy Subtraction

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & N \\ & \stackrel{N}{\varpi} \\ & \end{aligned}$ |  | NB: Continue to reinforce column method without regrouping (Year 2) | 10 s 1 is <br> (10) (10) (10) (1) (1) <br> (10) (10) (10)  <br> (10)  | $\begin{array}{\|r} \hline{ }^{30} 40+10+3 \\ -20+7 \\ 10+6 \\ \hline \end{array}$ |

## Woodlands Calculation Policy Subtraction

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & m \\ & \stackrel{n}{\infty} \\ & \stackrel{y}{\infty} \end{aligned}$ |  | NB: Continue to reinforce column method without regrouping (Year 2 and 3 ). $\begin{array}{r} 251 \\ -135 \\ \hline \end{array}$  $\begin{array}{r} 2^{4} \ngtr 1 \\ -135 \\ \hline \end{array}$  $\begin{array}{r} 2^{4} \not \$^{1} 1 \\ -135 \\ \hline \end{array}$ | Make the larger number with the place value counters <br> Start with the ones, can I take away 8 from 4 easily? I need to exchange 1 of my tens for 10 ones. <br> NB: Above method can be used as a concrete method | Children can start their formal written method by partitioning the number into clear place value columns. $\begin{gathered} 728-582=146 \\ \prime \prime \prime \\ c^{\prime \prime} \\ 7 \\ 5 \end{gathered} \quad 8 \quad 8 \quad 2 .$ <br> Moving forward the children use a more compact method. <br> This will lead to an understanding of subtracting any number including decimals. $\begin{array}{rrrrr}  & 5 & 12 & & 1 \\ 2 & 6 & 3 & & 0 \\ & 2 & 6 & . & 5 \\ \hline 2 & 3 & 6 & . & 5 \end{array}$ |

## Woodlands Calculation Policy Subtraction

|  | Objectives／sta ges in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\stackrel{ \pm}{\bar{\omega}}$ |  | －use this method for larger numbers（to at least 4 digits） <br> －use this method to subtract numbers with up to 2 decimal places． <br> －solve subtraction problems involving measures and money． |  |  |
| $\stackrel{\text { ® }}{\substack{\text { ¢ } \\ \text { ¢ }}}$ |  | －subtract decimals（including those which do not have the same amount of decimals digits）． <br> －solve subtraction problems involving measures and money． <br> －use as an inverse operation to check addition calculations． |  |  |
| $\stackrel{\circ}{\text { ¢ }}$ | $\begin{aligned} & n ⿱ 艹 ⿸ ⿻ 一 丿 口 \end{aligned}$ |  |  |  |

## Woodlands Calculation Policy Multiplication

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{ᄃ}{\#} \\ & \stackrel{\rightharpoonup}{U} \\ & \ddot{U} \\ & \ddot{\sim} \end{aligned}$ |  | $\begin{array}{lll} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | $\begin{array}{lll} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | $5+5=10$ |

## Woodlands Calculation Policy Multiplication

|  | Objectives/st ages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| N $\underset{\sim}{\bar{N}}$ N |  | objects to add equal groups. <br> Naman NMam Naman | There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? <br>  $5+5+5=15$ $\square$ | Write addition sentences to describe objects and pictures. <br> $2+2+2=6$ $2+2+2+2+2=10$ $2 \times 5=10$ <br> 2 multiplied by 5 <br> 5 pairs <br> 5 hops of 2 $5+5+5+5+5+5=30$ $5 \times 6=30$ <br> 5 multiplied by 6 <br> 6 groups of 5 <br> 6 hops of 5 $\begin{aligned} & 10 p+10 p+10 p+10 p+10 p=50 p \\ & 10 p \times 5=50 p \\ & 5 \text { hops of } 10 \end{aligned}$ |

## Woodlands Calculation Policy Multiplication

|  | Objectives/sta ges in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Create arrays using counters/cubes to show multiplication sentences. | Draw arrays in different rotations to find commutative multiplication sentences. $\begin{array}{ll}  & 4 \times 2=8 \\ 2 \times 4=8 & 2 \times 4=8 \\ & \\ & 4 \times 2=8 \end{array}$ <br> Link arrays to area of rectangles. | Use an array to write multiplication sentences and reinforce repeated addition. $\begin{gathered} c \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$ |

## Woodlands Calculation Policy Multiplication



## Woodlands Calculation Policy Multiplication

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Show the link with arrays to first introduce the expanded method. |  | Start with long multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{array}{r} 18 \\ \times \frac{13}{24}(3 \times 8) \\ 30(3 \times 10)) \\ 80(10 \times 8) \\ \frac{100}{234}(10 \times 10) \end{array}$ |
| in in ¢ ¢ |  | Children can continue to be supported by place value counters at the stage of multiplication. <br> It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below. | Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. | Start with long multiplication, reminding the children about lining up their numbers clearly in columns. <br> If it helps, children can write out what they are solving next to their answer. <br> This moves to the more compact method. $\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \end{array}$ |

## Woodlands Calculation Policy Division

\begin{tabular}{|c|c|c|c|c|}
\hline \& Objectives/s tages in development \& Concrete \& Pictorial \& Abstract <br>
\hline \&  \& I have 8 cubes, can you share them equally between two people? \& Children use pictures or shapes to share quantities.
$\square$ \& Share 8 buns between two people. <br>
\hline \[
$$
\begin{aligned}
& \text { N } \\
& \underset{\text { N}}{\grave{N}}
\end{aligned}
$$

\] \&  \& Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. \& \begin{tabular}{l}
Use a number line to show jumps in groups. The number of jumps equals the number of groups. <br>
Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. <br>
10 <br>
$?$

$$
\begin{aligned}
& 10 \div 5=? \\
& 5 \times ?=10
\end{aligned}
$$

 \& 

$$
10 \div 5=2
$$ <br>

Divide 10 into 5 groups. How many are in each group?
\end{tabular} <br>

\hline
\end{tabular}

## Woodlands Calculation Policy Division

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $\begin{array}{ll} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$ | Draw an array and use lines to split the array into groups to make multiplication and division sentences. | Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$ |
|  | $\frac{. \overline{0}}{\substack{n}}$ |  |  | $\begin{array}{rr}  & 3 \\ \cline { 2 - 2 } & 13 \\ -\quad 12 \\ \hline \end{array}$ $13 \div 4=3 r 1$ |

## Woodlands Calculation Policy Division

|  | Objectives/s tages in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $4 \longdiv { 1 \quad 3 }$ $52 \div 4=13$ $\begin{array}{rrr} 1 & 4 & 2 \\ 3 \\ \hline 4{ }^{1} 2 & 6 \end{array}$ $426 \div 3=142$ |
| $\begin{aligned} & \text { ñ } \\ & \stackrel{\hbar}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ |  |  |  | Move onto divisions with a remainder. Once children understand remainders, <br> r 2 <br> begin to <br> express as a <br> fraction or <br> decimal <br> according to the context. $\begin{gathered} 1861 / 5 \\ \left.5\right\|^{\prime 3} 33^{3} 1 \end{gathered}$ |

## Woodlands Calculation Policy Division

|  | Objectives/sta ges in development | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \circ \\ & \stackrel{1}{0} \\ & \end{aligned}$ |  |  |  | Children will use long division to divide numbers with up to 4 digits by 2 digit numbers.$\begin{gathered} 015 \\ 32 \begin{array}{\|c} 487 \\ \frac{-0}{48} \\ \frac{-32}{167} \\ \frac{-160}{7} \end{array} \end{gathered}$1 4 2 <br> 3 2 6 <br> -3  1 <br>  1 2 <br> -1 2 7 <br>  0 6 <br>   6 <br>   0$426 \div 3=142$$31 \begin{gathered} 1756 \\ \begin{array}{c} 546 \\ \frac{31}{236} \\ \frac{217}{19} \end{array} \end{gathered}$ |

## Language that children should become familiar with:

Addition: add addition Plus And count on more sum total altogether increase regrouping
Subtraction: subtract take away minus count back less fewer difference between regrouping, exchange (not borrow)
Multiplication: lots of, groups of, times multiply multiplication multiple product once, twice, three times array, row, column double repeated addition

Division: lots of groups of share group halve half divide division divided by remainder factor quotient divisible

